
Journal of Structural Geology. Vol. 12. No. 3. pp. 375 to 381. 1990 0191-8141/90 $03.00+0.00 
Printed in Great Britain ~) 1990 Pergamon Press plc 

Finite difference modelling of sandbox analogues, compaction and 
detachment free deformation 

DAVID WALTHAM 

Department of Geology, Royal Holloway and Bedford New College, University of London, Egham Hill, 
Egham, Surrey TW20 0EX, U.K. 

(Received 29 June 1989; accepted in revised form 9 October 1989) 

Abstract--The finite difference method, for the modelling of hangingwall deformation above faults, is applied to 
a wider range of problems. Close agreement has been achieved with the overall geometry of hangingwalls in 
sandbox analogue models of extensional faulting. These results give insights into the dynamics involved and 
zones of faulting can be indicated using stretch rate and shear rate maps. The controlling equations are then 
presented in a more general form which allows the effects of compaction to be included. Finally, the method is 
shown to be applicable to vertical and horizontal velocities (rather than speed and direction) and this has been 
used to model the crust deforming by brittle failure at the top, pure shear at the bottom and with a brittle--ductile 
transition in between. This system therefore allows modelling of crustal extension without the use of a 
detachment. 

INTRODUCTION 

THIS paper extends the methods introduced by Waltham 
(1989) in which the mathematics for using finite differ- 
ence techniques was presented. The underlying idea of 
this approach is that deformation may be considered in 
terms of the velocity of movement at each point in the 
hangingwall. Given this velocity field, the hangingwall 
geometry can be computed as it evolves during exten- 
sion (or compression). The choice of possible velocity 
fields is restricted by requiring that no compaction 
occurs and this gives rise to one equation at each point in 
the hangingwaU. However, there are two unknowns 
(horizontal and vertical velocity or, alternatively, speed 
and direction) and one of these must therefore be 
supplied. In Waltham (1989) this was tackled by re- 
quiring that particle displacement directions be specified 
throughout the hangingwall. The particle displacement 
rates were then calculated using this supplied direction 
field. Thus, a new geometric method for forward model- 
ling of hangingwall geometry, given a bounding fault 
and amount of extension, was presented. This method is 
superior to previous approaches (see Williams & Vann 
1987, for an excellent review) in that it does not require 
simplifying assumptions such as vertical simple shear 
(Verrall 1982) or inclined simple shear (White et al. 

1986) although these can be modelled as special cases. 
However, as a direct result of the finite difference 
method's increased generality, inverse modelling to pre- 
dict fault geometry from hangingwall deformation is not 
usually possible and the method of White et HI. (1986) is 
preferable for tackling this particular problem. 

In this paper, finite difference techniques are ex- 
tended to investigate a larger variety of problems. My 
intention is to present extensions to the method of 
Waltham (1989) although some interesting results inci- 
dentally emerge from the examples I use. I examine four 
new aspects of finite difference modelling. These are: 

(1) the problem of simulating sandbox analogue 
models is investigated and it is shown that the geometry 
of a numerically modelled hangingwaU can be made to 
approximate closely that of the equivalent analogue 
model; 

(2) faulting within the hangingwall is clearly an im- 
portant process in accommodating deformation and this 
is difficult to simulate since the finite difference 
approach deals best with quantities which vary smoothly 
with position. An indication of the likely positions of 
heavily faulted regions may be obtained by calculating 
stretch rate and shear rate maps from the velocity field 
used to generate the numerical result; 

(3) the finite difference technique is extended to allow 
for sediment compaction during burial. An example is 
given which shows the effect of this on deformation 
during extension above a listric detachment; 

(4) finite difference simulations can be performed 
using vertical and horizontal velocities rather than speed 
and direction. Many problems are more easily solved 
using this Cartesian approach. An example is given in 
which extension is accommodated by brittle failure in 
the top of a model and a uniformly distributed stretch at 
the bottom. The central portion of the model therefore 
represents a brittle--ductile transition zone. An import- 
ant feature of this model is that it models crustal exten- 
sion without using a detachment to decouple brittle 
failure in the upper crust from a ductile lower crust. 

SIMULATION OF ANALOGUE 
MODELLING RESULTS 

Hangingwall deformation may be simulated using 
sandbox analogue modelling methods (CloGs 1968, Fau- 
gere & Brun 1984, McClay & Ellis 1987). In McClay & 
Ellis (1987) deformation was simulated by progressively 
deforming layers of sand held between glass sidewalls. 
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The deformation was achieved by building the sand 
layers upon a plastic sheet and then slowly pulling this 
sheet along a predefined detachment surface. Thus. the 
displacement rate was constant along the entire fault 
surface including the detachment and curved listric part 
of the fault. In terms of computer  modelling, this is a 
different boundary condition to that employed in Wal- 
tham (1989). Note that, with a constant displacement 
rate along the fault, deformation cannot be described in 
terms of simple shear along inclined planes since this 
requires that the component  of velocity perpendicular to 
the shear planes is constant (White et al. 1986). In other 
words, inclined (or vertical) shear models will produce 
different displacement rates at different parts of a 
curved fault. 

Extensive comparisons of the results from analogue 
and computer  models have been carried out in order to 
confirm that the computer  models have the right general 
behaviour and as an aid in understanding how the 
analogue models have deformed in terms of displace- 
ment rates and displacement directions of individual 

particles, A single example is shown here to illustrate the 
method. 

Figure l(a) shows an interpretation of a 26 cm long 
analogue model after extension by an additional 26 cm 
above a listric detachment.  The alternating black and 
white layers represent pre-rift sediments whereas the 
unshaded layers are syn-rift. Syn-rift layer boundaries 
have been introduced after each 1 cm increment of 
extension. The general geometry shown in Fig. l(a) is 
typical of those produced in analogue model runs with 
listric bounding faults. Figure l(b) is the corresponding 
computer  model with a grid representing the pre-rift 
sediments and simple layers representing the syn-rift 
sediments. The syn-rift boundaries in the computer  
model have been introduced after each 2 cm of exten- 
sion, The displacement direction contours at 5 ° intervals 
are shown in Fig. l(c) and these were chosen by a 
process of trial and error to produce a reasonable match 
between the numerical and analogue models. The con- 
tour values equal the fault dip at the fault-contour 
intersections. 
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Fig. 1. Computer simulation of a sandbox analogue model. The model was initially 26 cm long and has been extended by an 
additional 26 cm. (a) Interpretation of sandbox result, black/white layers are pre-rift and plane layers are syn-rift. (b) 
Corresponding finite difference model, grid represents pre-rift sediment and simple layers are syn-rift. (c) Displacement 
direction contours at 5 ° intervals with contour value equal to fault dip at contour-fault intersection. (d) Hand contoured 

stretch rate map. Contour values are as a percentage of the maximum value. 



Finite difference modelling of extensional faulting 377 

Ignoring for the moment the effects of small-scale 
internal faulting, the overall geometries of the two 
models are similar with a very steep pre-rift-syn-rift 
boundary near the detachment and high curvature of 
this boundary at 2-3 cm above the detachment. In both 
models, this boundary becomes much less steep towards 
the right of the figure. This geometry is impossible to 
achieve with inclined simple shear since a steep shear 
plane dip would be required near the fault to get a high 
curvature on the pre-rift-syn-rift boundary whereas a 
shallow dip would be needed at the top of the model to 
achieve a broad enough region of deformation. In Wal- 
tham (1989) it was demonstrated that the direction 
contours are related to the shearing surfaces and in Fig. 1 
these contours are subparallel to the final positions of 
the bedding planes. This implies that a large amount of 
deformation has occurred by slippage between beds, a 
conclusion which could not easily be reached by any 
other method. 

SHEAR AND STRETCH RATES 

Strain, both in real hangingwalls and the analogue 
models discussed above, is usually localized rather than 
uniformly distributed, resulting in brittle faulting. Thus, 
to relate the deformation produced in the finite differ- 
ence modelling to the observed faulting of real cases, it is 
necessary to investigate how strain varies within the 
hangingwall. Shear strain and extension strain are easily 
calculated from the velocity field. 

Equations relating strain (or strain rates) to displace- 
ment (or displacement rates) are well known (e.g. 
Jaeger 1956). For extension rate, i,  the expression is 

= (avx/OX) cos 2 a + (avx/az + OvJOx) sin a cos a 
+ (Ovz/az) sin 2a, (1) 

The directions of maximum extension rate (the stretch 
rate) and the minimum extension rate are given by the 
two solutions of 

tan 2a = (avJaz  + Ovz/ax)/(ovJax - Ovzlaz). (2) 

Similarly, the shear rate, ~,, is given by 

~, = ( a v J a z  - avx/ax) sin 2a 
+ ( a v J a z  + avJax )  cos2a. (3) 

Thus, using equations (1)-(3), the stretch rate and shear 
rate at each point in the hangingwall can be calculated 
from the velocity field found using the finite difference 
method. Figure l(d) shows the stretch rate for the 
example used in the previous section. This stretch rate is 
displayed using contours with an increment of 5% of the 
maximum stretch rate. The maximum stretch rate (0.35 
of the extension rate) occurs near the top of the steep 
part of the bounding fault. These high rates near the 
fault indicate that slippage is occurring between the sand 
and the plastic detachment sheet and this slippage is 
indeed observed in the analogue model. The region of 
high strain in the hangingwall compare reasonably well 
to the position of early faulting found in the analogue 
SG 12:3-F* 

model (faults I and 2 in Fig. la). It must be remembered, 
when comparing Figs. l(d) and (a), that the faults have 
been transported away from their positions of formation 
by subsequent extension. 

MODELLING COMPACTION 

The assumption has been made, up to this point, that 
the material undergoing deformation is incompressible. 
However, real sediments undergo compaction as they 
are buried. The finite difference technique should in- 
clude compaction and a minor modification to the 
method allows it to do so. 

The starting point is conservation of mass which, for a 
flowing medium, requires that the equation of conti- 
nuity 

V. (pv) + OplOt = 0 (4) 

(Birkhoff 1955) is satisfied. Here, p is matrix density, v is 
vector velocity and t is time. This expresses, mathemat- 
ically, the idea that if material flows into a fixed volume 
at a rate which is different to that at which it flows out 
(this difference is expressed by the first term in equation 
4) then the density within the volume must alter (the rate 
of change of density is given by the second term). 

I now make the assumption that the material is homo- 
geneous, apart from a depth-dependent density vari- 
ation. In other words, I assume that density variations 
are the result of burial alone. The second term in the 
above equation becomes zero and the first term can be 
rearranged to yield 

V . v  + (vJp)(a,/az) = 0, (5)  

where vz is the component of velocity in the vertical, z, 
direction. Note that, if density does not alter with depth, 
equation (5) reduces to V-v = 0 which was the funda- 
mental equation used in Waltham (1989). Transforming 
equation (5) from horizontal and vertical components of 
velocity (v x and Vz) to speed, v, and direction, 0, using 

vx = v cos 0 (6) 
v= = v sin 0 (7) 

leads to 

avlax + (avlaz)  tan 0 
= v((aOlax) tan 0 - aOlaz - (tan O/p)(aptaz)) (8) 

which may be solved using the method of Waltham 
(1989). 

The density variation, p(z), can have any reasonably 
smooth form (i.e. it should be well sampled at the finite 
difference grid interval). One example arises from 
assuming exponential decay of porosity, ¢, with depth 
(Magara 1978, Steckler & Watts 1978, Sclater and Chris- 
tie 1980), i.e. 

¢ = ¢oe -~/~, (9) 
where ¢0 is the porosity at surface and ~. is the depth at 
which porosity has been reduced to ¢,,/e. For a matrix 
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Fig. 2. The effect of compaction on deformation during extension by 4 km above a listric detachment. The porosity at the 
surface was 40% falling exponentially to 15% at a depth of 2 km. The matrix density was 3 Mg m -3 : (a) Solid lines represent 
the result for no compaction and the dotted lines represent the result with compaction. The grids show the geometry of the 
pre-rift material and the curved lines show the syn-rift material. (b) Displacement direction contours at 5 ° intervals with 

contour value equal to fault dip at contour-fault intersection. 

with compacted density Pm this produces a depth- 
dependent density of 

p = Pm(1 - ~) (10) 

from which it follows that 

Op/Oz = pmq)/2. (11) 

An example which uses these expressions is now given. 
Figure 2 illustrates the effect of compaction on 

hangingwall geometry above a iistric fault with a detach- 
ment depth of 4 km. Note that the zero-gradient bound- 
ary conditions of Waltham (1989) have been used in this 
example rather than the constant-speed boundary con- 
dition discussed in the previous sections. An extension 
of 4 km has been used together with the displacement 
direction contours shown in Fig. 2(b) (5 ° contour inter- 
val,). In Fig. 2(a) the zero compaction result is shown 
with a full line whereas the result which includes com- 
paction is shown with a dashed line. The parameters 
used were ~0 = 40%, Pm= 3 Mg m -3 and 2 = 2000 m. 
Pre-rift sediments are represented by the initially square 
1 km grid and syn-rift sediments have been simulated by 
introducing a horizontal line at surface after every 500 m 

of extension. The difference between the two results is 
most noticeable in the top layer of the pre-rift sediments 
which thins from right to left in the compacted result 
compared to the non-compacted result. Note that com- 
paction has produced increased subsidence of the 
hangingwall with a greater thickness of syn-rift sediment 
and a slightly accentuated rollover. The deeper pre-rift 
sediments are not greatly affected since they do not 
undergo a large change in burial depth and were, in any 
case, already significantly compacted. 

Interesting comparisons can be made between Fig. 
2(a) and the results shown in White et  hi. (1986). Both 
sets of results show a compaction effect which increases 
with depth for syn-rift sediments but decreases with 
depth for the pre-rift sediments. However, there the 
similarity ends. The results of White et  hi. (1986) show a 
hangingwali syncline produced by differential compac- 
tion whereas this is not seen in Fig. 2(a). This compac- 
tion syncline results from the assumption of uniaxial 
compaction parallel to the inclined shear planes which 
necessarily prevents compaction from altering bed pos- 
itions on the bounding fault. However, no such uniaxial 
compaction assumption has been made in the derivation 
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of equation (8) and so compaction in a direction parallel 
to the bounding fault is permitted. Thus, a hangingwall 
syncline is not a necessary  geometric consequence of 
compaction although it may yet be shown that it is a 
physical consequence of compaction. 

MODELLING A BRITTLE--DUCTILE TRANSITION 

Figure 3 illustrates the application of the finite differ- 
ence method to a brittle-ductile transition problem. The 
model has undergone 5% extension with brittle failure 
in the top third, ductile behaviour in the bottom third 
and with transitional behaviour in the central third. As 
before, the pre-rift material is represented by an initially 
square grid and the syn-rift geometry is illustrated by 
simple layering. Figures 3(b) & (c) model slightly differ- 
ent behaviour in the plastic region. 

This diagram has been produced by calculating verti- 
cal velocity from horizontal velocity rather than by 
finding displacement rate from the displacement direc- 
tion. For many problems the solution is more easily 
found using this Cartesian framework. The general 
approach is to specify horizontal velocity everywhere 
together with the vertical velocity on the bottom, left 
and right boundaries. The vertical velocity field within 
the block is then calculated using 

~v: /~z  + #vx /~x  = 0. (12) 

(a) 
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Fig. 3. Computer simulation of extension in a model undergoing brittle 
deformation at the top and ductile deformation at the bottom. (a) 
Schematic diagram of the model. The entire right-hand boundary is 
moving at the same rate and the footwall region remains stationary 
throughout deformation. (b) The appearance of a grid after 5% 
extension. Syn-rift layer boundaries have been introduced at the 
model top after 2.5% and 5% extension. (c) Identical to (b) except the 
plastic zone extends under the entire width of the model rather than 

only to the right of the fault. 

Note that compaction has not been allowed for in this 
example although using equation (5) rather than 
equation (12) would easily allow the following approach 
to include compaction. 

Now, for a finite difference grid with the (i, j)th node 
at x = lax and z = jAz, equation (12) can he approxi- 
mated at the point x = lax, z = (j + ½)AZ, i.e. a point 
lying half way between two rows of nodes and in a 
column. After rearrangement this produces 

v z ( i , j  + 1) = Vz( i , j )  - A z ( O V x / d X ) i . j + l r 2 ,  (13) 

where 

(OVx/OX)i , j+I/ '  2 = [Vx(i + 1,j) - vx(i  - 1,j) 
+ Vx(i + 1, j + 1) - vx(i  - 1, j + 1)1/4~. (14) 

Thus, an unknown vertical displacement rate, 
vz(i,  j + 1), can be calculated from the vertical displace- 
ment rate, vz(i,  j), directly below. Note that this is an 
explicit formulation of the problem not requiring the 
tridiagonal matrix inversion used by Waltham (1989). 
Surprisingly, this algorithm produces stable answers and 
so the Crank-Nicolson (1947) approach is not required. 

Another difference between this vertical-horizontal 
approach and the speed--direction approach is that cal- 
culations are performed from bottom to top rather than 
from hangingwall pin line to fault. Thus, the second 
bottom row of velocities is calculated using the values in 
the bottom row, then the third row is calculated from the 
second and so on up to the top of the model. This has the 
advantage that a top boundary condition is not required 
and, instead, boundary conditions are required on both 
vertical edges of the model (rather than just one). For 
the problem considered here, these bounda~" conditions 
are much easier to specify. 

The horizontal velocity field used in Fig. 3 is as 
follows. In the footwall vx = 0.0 (a small negative value 
could have been used and this would have produced 
some footwall uplift). In the brittle zone vx = Vmax, i.e. 
constant heave. For the ductile zone, vx increases 
linearly from the 'fault' to the right-hand edge where 
v x = Vma x. In the transition zone vx is a weighted aver- 
age of the brittle value and the ductile value with the 
weighting linearly dependent on height to give the 
ductile value at the zone base and the brittle value at the 
zone top. 

The boundary conditions for vertical velocity on the 
lower and left boundaries are 

v~ = 0 .0  (15) 

and on the right boundary in the ductile layer 

Vz = - az ,  (16) 

where a is the constant of proportionality used to pro- 
duce the linearly increasing vx and z is height above the 
model base. Note that,because of the inclined fault, a 
varies with z. In the transition zone the right-hand 
boundary condition is 

v~ = VI - azl2,  (17) 

where V I is the vertical velocity at the top of the ductile 
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layer, z is height above the base of the transition layer 
and a is defined as before. Finally, the boundary con- 
dition in the brittle layer is 

v~ = v2, (18) 

where V 2 is the vertical velocity at the top of the 
transition region. Note that the boundary condition in 
the transition region is intermediate between a constant 
value, as in the brittle layer, and a linearly varying value, 
as in the ductile layer. 

The boundary condition given by equation (15) pro- 
duces a bottom boundary which does not move verti- 
cally. Thus, the bottom of the model represents a hypo- 
thetical depth in the crust which is unaltered by 
extension. In practice there must be such a depth but 
there is no reason to suppose, as I have done here, that 
this depth does not vary with horizontal position and 
time (Barr 1987a,b). 

The remaining boundary conditions ensure smoothly 
varying behaviour from plastic deformation with a 
linearly increasing vertical velocity in the bottom third of 
the model to a constant vertical velocity in the top third 
of the model. 

Points to note about the result, which is shown in Fig. 
3(b), are the large subsidence observed near to the fault, 
at surface, due to a hangingwall rollover and the smaller 
subsidence in the right half of the model caused by 
thinning of the ductile layer. Between these two regions 
of subsidence is a relative high where neither process has 
much effect. Note also that a zone of distributed shear is 
generated within the transition region which accommo- 
dates the strain between the brittle and plastic parts of 
the model. This contrasts with previous models in which 
this strain is accommodated by a detachment at which an 
instantaneous change from brittle to plastic behaviour 
occurs (Kusznir et al. 1987). 

Figure 3(c) is identical to Fig. 3(b) except that the 
region of plastic deformation extends across the entire 
width of the model. The boundary conditions used to 
produce this result are the same as those used to produce 
Fig. 3(b) except that the left-hand conditions are now 
the same as those used for the right-hand side in Fig. 
3(b). The hangingwall anticline is no longer present and 
this result, produced by varying the position of the 
plastic deformation region with respect to the fault, is 
very similar to that shown by Kusznir et al. (1987). In 
addition, moving the region of plastic deformation 
under the footwall results in footwail subsidence, 
although this effect would be modified if isostasy and 
flexural rigidity were included. The zone of distributed 
shear now extends under the footwali with an abrupt 
change in sense from sinistral (footwall) to dextral 
(hangingwall) at the fault. 

DISCUSSION 

I have attempted to demonstrate the power and flexi- 
bility of the finite difference method for modelling 
crustal deformation. The technique easily handles prob- 

lems such as compaction and variation in behaviour with 
depth and could, in principle, be used to model situ- 
ations involving compositional inhomogeneities. In 
addition, by attempting to numerically reproduce the 
geometries observed in analogue models or natural 
examples, an insight can be gained into the dynamics 
involved. No other single technique can handle all of  the 
features modelled in the various sections of this paper, 
i.e. constant (or any other suitable form) displacement 
rate on a listric fault; shearing along non-planar sur- 
faces; production of shear and extension strain maps; 
transition from brittle to ductile behaviour without the 
use of a detachment surface; and compaction. However, 
for many applications not requiring these refinements, 
other simpler techniques should still be preferred and 
this is particularly true for the inverse problem of pre- 
dicting fault geometry from bed deformation. 

This paper is intended to present general methods 
rather than specific results. However, several important 
results have emerged from the examples given. Firstly, 
to reproduce the broad outlines of the analogue models 
it is necessary to have the dip of the shearing surfaces 
decrease with height above the detachment. This implies 
that strain is more widely distributed at surface than itis 
at depth and also that bed slip is an important mechan- 
ism in hangingwall deformation. Secondly, the failure of 
the compaction models to produce a hangingwall syn- 
cline shows that such a syncline is not a necessary 
geometric result of compaction and therefore drag in the 
vicinity of the bounding fault is a more likely mechanism 
for this frequently observed phenomenon. Finally, the 
brittle-ductile modelling runs confirm the suggestion of 
Kusznir et al. (1987) that the distribution of pure shear in 
the lower crust with respect to faulting in the upper crust 
has an important effect on hangingwall geometry and 
can, for example, produce a hangingwall anticline from 
a simple planar fault. 

Many refinements to the finite difference modelling of 
deformation remain to be attempted. For example, 
isostasy and thermal relaxation are obviously important 
factors in the situation being modelled in Fig. 3. Can 
these be included in the finite difference scheme? The 
effect of compositional inhomogeneities has been 
touched upon several times in this paper but this work is 
still in its early stages. The finite difference method 
could, in principle, also be used to model more complex 
forms of crustal deformation such as rotating fault 
blocks above a uniformly extending lower crust. This 
would require the velocity model to be updated after 
each increment of extension since the faults themselves 
would be moving. Unfortunately, it is not clear which 
boundary conditions should be used for modelling a 
rotating fault block system and this system has not yet 
been modelled by the author. 

Finally, it should be pointed out that the finite differ- 
ence technique, as used here, is not a detailed physical 
model of crustal deformation. Rather, it is a method for 
visualizing the geometrical consequences of hypotheses 
such as non-planar shearing surfaces or exponential 
decrease of porosity with depth. 
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